Boundedness and strong stability of Runge-Kutta methods
نویسندگان
چکیده
In the literature, much attention has been paid to Runge-Kutta methods (RKMs) satisfying special nonlinear stability requirements indicated by the terms total-variation-diminishing (TVD), strong stability preserving (SSP) and monotonicity. Stepsize conditions, guaranteeing these properties, were derived by Shu and Osher [J. Comput. Phys., 77 (1988) pp. 439-471] and in numerous subsequent papers. These special stability requirements imply essential boundedness properties for the numerical methods, among which the property of being total-variation-bounded. Unfortunately, for many RKMs, the above special requirements are violated, so that one cannot conclude in this way that the methods are (total-variation) bounded. In this paper, we study stepsize-conditions for boundedness directly, rather than via the detour of the above special stability properties. We focus on stepsize-conditions which are optimal, in that they are not unnecessarily restrictive. We find that, in situations where the special stability properties mentioned above are violated, boundedness can be present only within a class of very special RKMs. As a by-product, our analysis sheds new light on the known theory of monotonicity for RKMs. We obtain separate results for internal and external monotonicity, as well as a new proof of the fundamental relation between monotonicity and Kraaijevanger’s coefficient. This proof distinguishes itself from older ones in that it is shorter and more transparent, while it requires simpler assumptions on the RKMs under consideration.
منابع مشابه
Optimal Implicit Strong Stability Preserving Runge–Kutta Methods
Strong stability preserving (SSP) time discretizations were developed for use with the spatial discretization of partial differential equations that are strongly stable under forward Euler time integration. SSP methods preserve convex boundedness and contractivity properties satisfied by forward Euler, under a modified time-step restriction. We turn to implicit Runge–Kutta methods to alleviate ...
متن کاملStepsize Conditions for Boundedness in Numerical Initial Value Problems
For Runge-Kutta methods (RKMs), linear multistep methods (LMMs) and classes of general linear methods (GLMs) much attention has been paid, in the literature, to special nonlinear stability requirements indicated by the terms total-variation-diminishing (TVD), strong stability preserving (SSP) and monotonicity. Stepsize conditions, guaranteeing these properties, were derived by Shu & Osher [J. C...
متن کاملOn monotonicity and boundedness properties of linear multistep methods
In this paper an analysis is provided of nonlinear monotonicity and boundedness properties for linear multistep methods. Instead of strict monotonicity for arbitrary starting values we shall focus on generalized monotonicity or boundedness with Runge-Kutta starting procedures. This allows many multistep methods of practical interest to be included in the theory. In a related manner, we also con...
متن کاملHigh-order linear multistep methods with general monotonicity and boundedness properties
We consider linear multistep methods that possess general monotonicity and boundedness properties. Strict monotonicity, in terms of arbitrary starting values for the multistep schemes, is only valid for a small class of methods, under very stringent step size restrictions. This makes them uncompetitive with the strong-stability-preserving (SSP) Runge– Kutta methods. By relaxing these strict mon...
متن کاملHigh Order Strong Stability Preserving Time Discretizations
Strong stability preserving (SSP) high order time discretizations were developed to ensure nonlinear stability properties necessary in the numerical solution of hyperbolic partial differential equations with discontinuous solutions. SSP methods preserve the strong stability properties – in any norm, seminorm or convex functional – of the spatial discretization coupled with first order Euler tim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Math. Comput.
دوره 80 شماره
صفحات -
تاریخ انتشار 2011